Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ecelqsi.1 | |- R e. _V |
|
| Assertion | ecelqsi | |- ( B e. A -> [ B ] R e. ( A /. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 | |- R e. _V |
|
| 2 | ecelqsg | |- ( ( R e. _V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |
|
| 3 | 1 2 | mpan | |- ( B e. A -> [ B ] R e. ( A /. R ) ) |