Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ecelqsi.1 | |- R e. _V |
|
Assertion | ecelqsi | |- ( B e. A -> [ B ] R e. ( A /. R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecelqsi.1 | |- R e. _V |
|
2 | ecelqsg | |- ( ( R e. _V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |
|
3 | 1 2 | mpan | |- ( B e. A -> [ B ] R e. ( A /. R ) ) |