Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | eceq2 | |- ( A = B -> [ C ] A = [ C ] B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1 | |- ( A = B -> ( A " { C } ) = ( B " { C } ) ) |
|
2 | df-ec | |- [ C ] A = ( A " { C } ) |
|
3 | df-ec | |- [ C ] B = ( B " { C } ) |
|
4 | 1 2 3 | 3eqtr4g | |- ( A = B -> [ C ] A = [ C ] B ) |