Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecex2 | |- ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecexg | |- ( ( R |` A ) e. V -> [ B ] ( R |` A ) e. _V ) |
|
| 2 | ecres2 | |- ( B e. A -> [ B ] ( R |` A ) = [ B ] R ) |
|
| 3 | 2 | eleq1d | |- ( B e. A -> ( [ B ] ( R |` A ) e. _V <-> [ B ] R e. _V ) ) |
| 4 | 1 3 | syl5ibcom | |- ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. _V ) ) |