Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecexg | |- ( R e. B -> [ A ] R e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec | |- [ A ] R = ( R " { A } ) |
|
| 2 | imaexg | |- ( R e. B -> ( R " { A } ) e. _V ) |
|
| 3 | 1 2 | eqeltrid | |- ( R e. B -> [ A ] R e. _V ) |