Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | ecexg | |- ( R e. B -> [ A ] R e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec | |- [ A ] R = ( R " { A } ) |
|
2 | imaexg | |- ( R e. B -> ( R " { A } ) e. _V ) |
|
3 | 1 2 | eqeltrid | |- ( R e. B -> [ A ] R e. _V ) |