Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ecexr | |- ( A e. [ B ] R -> B e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i | |- ( A e. ( R " { B } ) -> -. ( R " { B } ) = (/) ) |
|
2 | snprc | |- ( -. B e. _V <-> { B } = (/) ) |
|
3 | imaeq2 | |- ( { B } = (/) -> ( R " { B } ) = ( R " (/) ) ) |
|
4 | 2 3 | sylbi | |- ( -. B e. _V -> ( R " { B } ) = ( R " (/) ) ) |
5 | ima0 | |- ( R " (/) ) = (/) |
|
6 | 4 5 | eqtrdi | |- ( -. B e. _V -> ( R " { B } ) = (/) ) |
7 | 1 6 | nsyl2 | |- ( A e. ( R " { B } ) -> B e. _V ) |
8 | df-ec | |- [ B ] R = ( R " { B } ) |
|
9 | 7 8 | eleq2s | |- ( A e. [ B ] R -> B e. _V ) |