Metamath Proof Explorer


Theorem ecexr

Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion ecexr
|- ( A e. [ B ] R -> B e. _V )

Proof

Step Hyp Ref Expression
1 n0i
 |-  ( A e. ( R " { B } ) -> -. ( R " { B } ) = (/) )
2 snprc
 |-  ( -. B e. _V <-> { B } = (/) )
3 imaeq2
 |-  ( { B } = (/) -> ( R " { B } ) = ( R " (/) ) )
4 2 3 sylbi
 |-  ( -. B e. _V -> ( R " { B } ) = ( R " (/) ) )
5 ima0
 |-  ( R " (/) ) = (/)
6 4 5 eqtrdi
 |-  ( -. B e. _V -> ( R " { B } ) = (/) )
7 1 6 nsyl2
 |-  ( A e. ( R " { B } ) -> B e. _V )
8 df-ec
 |-  [ B ] R = ( R " { B } )
9 7 8 eleq2s
 |-  ( A e. [ B ] R -> B e. _V )