| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecgrtg.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
ecgrtg.2 |
|- P = ( Base ` ( EEG ` N ) ) |
| 3 |
|
ecgrtg.3 |
|- .- = ( dist ` ( EEG ` N ) ) |
| 4 |
|
ecgrtg.a |
|- ( ph -> A e. P ) |
| 5 |
|
ecgrtg.b |
|- ( ph -> B e. P ) |
| 6 |
|
ecgrtg.c |
|- ( ph -> C e. P ) |
| 7 |
|
ecgrtg.d |
|- ( ph -> D e. P ) |
| 8 |
|
eengbas |
|- ( N e. NN -> ( EE ` N ) = ( Base ` ( EEG ` N ) ) ) |
| 9 |
1 8
|
syl |
|- ( ph -> ( EE ` N ) = ( Base ` ( EEG ` N ) ) ) |
| 10 |
9 2
|
eqtr4di |
|- ( ph -> ( EE ` N ) = P ) |
| 11 |
4 10
|
eleqtrrd |
|- ( ph -> A e. ( EE ` N ) ) |
| 12 |
5 10
|
eleqtrrd |
|- ( ph -> B e. ( EE ` N ) ) |
| 13 |
6 10
|
eleqtrrd |
|- ( ph -> C e. ( EE ` N ) ) |
| 14 |
7 10
|
eleqtrrd |
|- ( ph -> D e. ( EE ` N ) ) |
| 15 |
|
brcgr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
| 16 |
11 12 13 14 15
|
syl22anc |
|- ( ph -> ( <. A , B >. Cgr <. C , D >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
| 17 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
| 18 |
|
fvexd |
|- ( ph -> ( EEG ` N ) e. _V ) |
| 19 |
|
eengstr |
|- ( N e. NN -> ( EEG ` N ) Struct <. 1 , ; 1 7 >. ) |
| 20 |
1 19
|
syl |
|- ( ph -> ( EEG ` N ) Struct <. 1 , ; 1 7 >. ) |
| 21 |
|
structn0fun |
|- ( ( EEG ` N ) Struct <. 1 , ; 1 7 >. -> Fun ( ( EEG ` N ) \ { (/) } ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> Fun ( ( EEG ` N ) \ { (/) } ) ) |
| 23 |
|
structcnvcnv |
|- ( ( EEG ` N ) Struct <. 1 , ; 1 7 >. -> `' `' ( EEG ` N ) = ( ( EEG ` N ) \ { (/) } ) ) |
| 24 |
20 23
|
syl |
|- ( ph -> `' `' ( EEG ` N ) = ( ( EEG ` N ) \ { (/) } ) ) |
| 25 |
24
|
funeqd |
|- ( ph -> ( Fun `' `' ( EEG ` N ) <-> Fun ( ( EEG ` N ) \ { (/) } ) ) ) |
| 26 |
22 25
|
mpbird |
|- ( ph -> Fun `' `' ( EEG ` N ) ) |
| 27 |
|
opex |
|- <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. _V |
| 28 |
27
|
prid2 |
|- <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } |
| 29 |
|
elun1 |
|- ( <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } -> <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
| 30 |
28 29
|
ax-mp |
|- <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) |
| 31 |
|
eengv |
|- ( N e. NN -> ( EEG ` N ) = ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
| 32 |
1 31
|
syl |
|- ( ph -> ( EEG ` N ) = ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
| 33 |
30 32
|
eleqtrrid |
|- ( ph -> <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. ( EEG ` N ) ) |
| 34 |
|
fvex |
|- ( EE ` N ) e. _V |
| 35 |
34 34
|
mpoex |
|- ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) e. _V |
| 36 |
35
|
a1i |
|- ( ph -> ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) e. _V ) |
| 37 |
17 18 26 33 36
|
strfv2d |
|- ( ph -> ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) = ( dist ` ( EEG ` N ) ) ) |
| 38 |
3 37
|
eqtr4id |
|- ( ph -> .- = ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) ) |
| 39 |
|
simplrl |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> x = A ) |
| 40 |
39
|
fveq1d |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( A ` i ) ) |
| 41 |
|
simplrr |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> y = B ) |
| 42 |
41
|
fveq1d |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> ( y ` i ) = ( B ` i ) ) |
| 43 |
40 42
|
oveq12d |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> ( ( x ` i ) - ( y ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) |
| 44 |
43
|
oveq1d |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
| 45 |
44
|
sumeq2dv |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
| 46 |
|
sumex |
|- sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. _V |
| 47 |
46
|
a1i |
|- ( ph -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. _V ) |
| 48 |
38 45 11 12 47
|
ovmpod |
|- ( ph -> ( A .- B ) = sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
| 49 |
48
|
eqcomd |
|- ( ph -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( A .- B ) ) |
| 50 |
|
simplrl |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> x = C ) |
| 51 |
50
|
fveq1d |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( C ` i ) ) |
| 52 |
|
simplrr |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> y = D ) |
| 53 |
52
|
fveq1d |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> ( y ` i ) = ( D ` i ) ) |
| 54 |
51 53
|
oveq12d |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> ( ( x ` i ) - ( y ` i ) ) = ( ( C ` i ) - ( D ` i ) ) ) |
| 55 |
54
|
oveq1d |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
| 56 |
55
|
sumeq2dv |
|- ( ( ph /\ ( x = C /\ y = D ) ) -> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
| 57 |
|
sumex |
|- sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. _V |
| 58 |
57
|
a1i |
|- ( ph -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. _V ) |
| 59 |
38 56 13 14 58
|
ovmpod |
|- ( ph -> ( C .- D ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
| 60 |
59
|
eqcomd |
|- ( ph -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) = ( C .- D ) ) |
| 61 |
49 60
|
eqeq12d |
|- ( ph -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) <-> ( A .- B ) = ( C .- D ) ) ) |
| 62 |
16 61
|
bitrd |
|- ( ph -> ( <. A , B >. Cgr <. C , D >. <-> ( A .- B ) = ( C .- D ) ) ) |