Metamath Proof Explorer


Theorem ecidsn

Description: An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004)

Ref Expression
Assertion ecidsn
|- [ A ] _I = { A }

Proof

Step Hyp Ref Expression
1 df-ec
 |-  [ A ] _I = ( _I " { A } )
2 imai
 |-  ( _I " { A } ) = { A }
3 1 2 eqtri
 |-  [ A ] _I = { A }