| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> B e. A ) |
| 2 |
1
|
snssd |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> { B } C_ A ) |
| 3 |
|
dfss2 |
|- ( { B } C_ A <-> ( { B } i^i A ) = { B } ) |
| 4 |
2 3
|
sylib |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( { B } i^i A ) = { B } ) |
| 5 |
4
|
imaeq2d |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " ( { B } i^i A ) ) = ( R " { B } ) ) |
| 6 |
5
|
ineq1d |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( ( R " ( { B } i^i A ) ) i^i A ) = ( ( R " { B } ) i^i A ) ) |
| 7 |
|
imass2 |
|- ( { B } C_ A -> ( R " { B } ) C_ ( R " A ) ) |
| 8 |
2 7
|
syl |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) C_ ( R " A ) ) |
| 9 |
|
simpl |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " A ) C_ A ) |
| 10 |
8 9
|
sstrd |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) C_ A ) |
| 11 |
|
dfss2 |
|- ( ( R " { B } ) C_ A <-> ( ( R " { B } ) i^i A ) = ( R " { B } ) ) |
| 12 |
10 11
|
sylib |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( ( R " { B } ) i^i A ) = ( R " { B } ) ) |
| 13 |
6 12
|
eqtr2d |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) = ( ( R " ( { B } i^i A ) ) i^i A ) ) |
| 14 |
|
imainrect |
|- ( ( R i^i ( A X. A ) ) " { B } ) = ( ( R " ( { B } i^i A ) ) i^i A ) |
| 15 |
13 14
|
eqtr4di |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) = ( ( R i^i ( A X. A ) ) " { B } ) ) |
| 16 |
|
df-ec |
|- [ B ] R = ( R " { B } ) |
| 17 |
|
df-ec |
|- [ B ] ( R i^i ( A X. A ) ) = ( ( R i^i ( A X. A ) ) " { B } ) |
| 18 |
15 16 17
|
3eqtr4g |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> [ B ] R = [ B ] ( R i^i ( A X. A ) ) ) |