Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> B e. A ) |
2 |
1
|
snssd |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> { B } C_ A ) |
3 |
|
df-ss |
|- ( { B } C_ A <-> ( { B } i^i A ) = { B } ) |
4 |
2 3
|
sylib |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( { B } i^i A ) = { B } ) |
5 |
4
|
imaeq2d |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " ( { B } i^i A ) ) = ( R " { B } ) ) |
6 |
5
|
ineq1d |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( ( R " ( { B } i^i A ) ) i^i A ) = ( ( R " { B } ) i^i A ) ) |
7 |
|
imass2 |
|- ( { B } C_ A -> ( R " { B } ) C_ ( R " A ) ) |
8 |
2 7
|
syl |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) C_ ( R " A ) ) |
9 |
|
simpl |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " A ) C_ A ) |
10 |
8 9
|
sstrd |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) C_ A ) |
11 |
|
df-ss |
|- ( ( R " { B } ) C_ A <-> ( ( R " { B } ) i^i A ) = ( R " { B } ) ) |
12 |
10 11
|
sylib |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( ( R " { B } ) i^i A ) = ( R " { B } ) ) |
13 |
6 12
|
eqtr2d |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) = ( ( R " ( { B } i^i A ) ) i^i A ) ) |
14 |
|
imainrect |
|- ( ( R i^i ( A X. A ) ) " { B } ) = ( ( R " ( { B } i^i A ) ) i^i A ) |
15 |
13 14
|
eqtr4di |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) = ( ( R i^i ( A X. A ) ) " { B } ) ) |
16 |
|
df-ec |
|- [ B ] R = ( R " { B } ) |
17 |
|
df-ec |
|- [ B ] ( R i^i ( A X. A ) ) = ( ( R i^i ( A X. A ) ) " { B } ) |
18 |
15 16 17
|
3eqtr4g |
|- ( ( ( R " A ) C_ A /\ B e. A ) -> [ B ] R = [ B ] ( R i^i ( A X. A ) ) ) |