Step |
Hyp |
Ref |
Expression |
1 |
|
ecopopr.1 |
|- .~ = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } |
2 |
|
ecopopr.com |
|- ( x .+ y ) = ( y .+ x ) |
3 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } C_ ( ( S X. S ) X. ( S X. S ) ) |
4 |
1 3
|
eqsstri |
|- .~ C_ ( ( S X. S ) X. ( S X. S ) ) |
5 |
4
|
brel |
|- ( A .~ B -> ( A e. ( S X. S ) /\ B e. ( S X. S ) ) ) |
6 |
|
eqid |
|- ( S X. S ) = ( S X. S ) |
7 |
|
breq1 |
|- ( <. f , g >. = A -> ( <. f , g >. .~ <. h , t >. <-> A .~ <. h , t >. ) ) |
8 |
|
breq2 |
|- ( <. f , g >. = A -> ( <. h , t >. .~ <. f , g >. <-> <. h , t >. .~ A ) ) |
9 |
7 8
|
bibi12d |
|- ( <. f , g >. = A -> ( ( <. f , g >. .~ <. h , t >. <-> <. h , t >. .~ <. f , g >. ) <-> ( A .~ <. h , t >. <-> <. h , t >. .~ A ) ) ) |
10 |
|
breq2 |
|- ( <. h , t >. = B -> ( A .~ <. h , t >. <-> A .~ B ) ) |
11 |
|
breq1 |
|- ( <. h , t >. = B -> ( <. h , t >. .~ A <-> B .~ A ) ) |
12 |
10 11
|
bibi12d |
|- ( <. h , t >. = B -> ( ( A .~ <. h , t >. <-> <. h , t >. .~ A ) <-> ( A .~ B <-> B .~ A ) ) ) |
13 |
1
|
ecopoveq |
|- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> ( f .+ t ) = ( g .+ h ) ) ) |
14 |
|
vex |
|- f e. _V |
15 |
|
vex |
|- t e. _V |
16 |
14 15 2
|
caovcom |
|- ( f .+ t ) = ( t .+ f ) |
17 |
|
vex |
|- g e. _V |
18 |
|
vex |
|- h e. _V |
19 |
17 18 2
|
caovcom |
|- ( g .+ h ) = ( h .+ g ) |
20 |
16 19
|
eqeq12i |
|- ( ( f .+ t ) = ( g .+ h ) <-> ( t .+ f ) = ( h .+ g ) ) |
21 |
|
eqcom |
|- ( ( t .+ f ) = ( h .+ g ) <-> ( h .+ g ) = ( t .+ f ) ) |
22 |
20 21
|
bitri |
|- ( ( f .+ t ) = ( g .+ h ) <-> ( h .+ g ) = ( t .+ f ) ) |
23 |
13 22
|
bitrdi |
|- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> ( h .+ g ) = ( t .+ f ) ) ) |
24 |
1
|
ecopoveq |
|- ( ( ( h e. S /\ t e. S ) /\ ( f e. S /\ g e. S ) ) -> ( <. h , t >. .~ <. f , g >. <-> ( h .+ g ) = ( t .+ f ) ) ) |
25 |
24
|
ancoms |
|- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. h , t >. .~ <. f , g >. <-> ( h .+ g ) = ( t .+ f ) ) ) |
26 |
23 25
|
bitr4d |
|- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> <. h , t >. .~ <. f , g >. ) ) |
27 |
6 9 12 26
|
2optocl |
|- ( ( A e. ( S X. S ) /\ B e. ( S X. S ) ) -> ( A .~ B <-> B .~ A ) ) |
28 |
5 27
|
syl |
|- ( A .~ B -> ( A .~ B <-> B .~ A ) ) |
29 |
28
|
ibi |
|- ( A .~ B -> B .~ A ) |