Step |
Hyp |
Ref |
Expression |
1 |
|
ecovass.1 |
|- D = ( ( S X. S ) /. .~ ) |
2 |
|
ecovass.2 |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = [ <. G , H >. ] .~ ) |
3 |
|
ecovass.3 |
|- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. N , Q >. ] .~ ) |
4 |
|
ecovass.4 |
|- ( ( ( G e. S /\ H e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
5 |
|
ecovass.5 |
|- ( ( ( x e. S /\ y e. S ) /\ ( N e. S /\ Q e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) = [ <. L , M >. ] .~ ) |
6 |
|
ecovass.6 |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( G e. S /\ H e. S ) ) |
7 |
|
ecovass.7 |
|- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( N e. S /\ Q e. S ) ) |
8 |
|
ecovass.8 |
|- J = L |
9 |
|
ecovass.9 |
|- K = M |
10 |
|
oveq1 |
|- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = ( A .+ [ <. z , w >. ] .~ ) ) |
11 |
10
|
oveq1d |
|- ( [ <. x , y >. ] .~ = A -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( ( A .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) ) |
12 |
|
oveq1 |
|- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( A .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) ) |
13 |
11 12
|
eqeq12d |
|- ( [ <. x , y >. ] .~ = A -> ( ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) <-> ( ( A .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( A .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) ) ) |
14 |
|
oveq2 |
|- ( [ <. z , w >. ] .~ = B -> ( A .+ [ <. z , w >. ] .~ ) = ( A .+ B ) ) |
15 |
14
|
oveq1d |
|- ( [ <. z , w >. ] .~ = B -> ( ( A .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( ( A .+ B ) .+ [ <. v , u >. ] .~ ) ) |
16 |
|
oveq1 |
|- ( [ <. z , w >. ] .~ = B -> ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) = ( B .+ [ <. v , u >. ] .~ ) ) |
17 |
16
|
oveq2d |
|- ( [ <. z , w >. ] .~ = B -> ( A .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( A .+ ( B .+ [ <. v , u >. ] .~ ) ) ) |
18 |
15 17
|
eqeq12d |
|- ( [ <. z , w >. ] .~ = B -> ( ( ( A .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( A .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) <-> ( ( A .+ B ) .+ [ <. v , u >. ] .~ ) = ( A .+ ( B .+ [ <. v , u >. ] .~ ) ) ) ) |
19 |
|
oveq2 |
|- ( [ <. v , u >. ] .~ = C -> ( ( A .+ B ) .+ [ <. v , u >. ] .~ ) = ( ( A .+ B ) .+ C ) ) |
20 |
|
oveq2 |
|- ( [ <. v , u >. ] .~ = C -> ( B .+ [ <. v , u >. ] .~ ) = ( B .+ C ) ) |
21 |
20
|
oveq2d |
|- ( [ <. v , u >. ] .~ = C -> ( A .+ ( B .+ [ <. v , u >. ] .~ ) ) = ( A .+ ( B .+ C ) ) ) |
22 |
19 21
|
eqeq12d |
|- ( [ <. v , u >. ] .~ = C -> ( ( ( A .+ B ) .+ [ <. v , u >. ] .~ ) = ( A .+ ( B .+ [ <. v , u >. ] .~ ) ) <-> ( ( A .+ B ) .+ C ) = ( A .+ ( B .+ C ) ) ) ) |
23 |
|
opeq12 |
|- ( ( J = L /\ K = M ) -> <. J , K >. = <. L , M >. ) |
24 |
23
|
eceq1d |
|- ( ( J = L /\ K = M ) -> [ <. J , K >. ] .~ = [ <. L , M >. ] .~ ) |
25 |
8 9 24
|
mp2an |
|- [ <. J , K >. ] .~ = [ <. L , M >. ] .~ |
26 |
2
|
oveq1d |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) ) |
27 |
26
|
adantr |
|- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) ) |
28 |
6 4
|
sylan |
|- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
29 |
27 28
|
eqtrd |
|- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
30 |
29
|
3impa |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
31 |
3
|
oveq2d |
|- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) ) |
32 |
31
|
adantl |
|- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) ) |
33 |
7 5
|
sylan2 |
|- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) = [ <. L , M >. ] .~ ) |
34 |
32 33
|
eqtrd |
|- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = [ <. L , M >. ] .~ ) |
35 |
34
|
3impb |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = [ <. L , M >. ] .~ ) |
36 |
25 30 35
|
3eqtr4a |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) ) |
37 |
1 13 18 22 36
|
3ecoptocl |
|- ( ( A e. D /\ B e. D /\ C e. D ) -> ( ( A .+ B ) .+ C ) = ( A .+ ( B .+ C ) ) ) |