Step |
Hyp |
Ref |
Expression |
1 |
|
ecovcom.1 |
|- C = ( ( S X. S ) /. .~ ) |
2 |
|
ecovcom.2 |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = [ <. D , G >. ] .~ ) |
3 |
|
ecovcom.3 |
|- ( ( ( z e. S /\ w e. S ) /\ ( x e. S /\ y e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) = [ <. H , J >. ] .~ ) |
4 |
|
ecovcom.4 |
|- D = H |
5 |
|
ecovcom.5 |
|- G = J |
6 |
|
oveq1 |
|- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = ( A .+ [ <. z , w >. ] .~ ) ) |
7 |
|
oveq2 |
|- ( [ <. x , y >. ] .~ = A -> ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) = ( [ <. z , w >. ] .~ .+ A ) ) |
8 |
6 7
|
eqeq12d |
|- ( [ <. x , y >. ] .~ = A -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) <-> ( A .+ [ <. z , w >. ] .~ ) = ( [ <. z , w >. ] .~ .+ A ) ) ) |
9 |
|
oveq2 |
|- ( [ <. z , w >. ] .~ = B -> ( A .+ [ <. z , w >. ] .~ ) = ( A .+ B ) ) |
10 |
|
oveq1 |
|- ( [ <. z , w >. ] .~ = B -> ( [ <. z , w >. ] .~ .+ A ) = ( B .+ A ) ) |
11 |
9 10
|
eqeq12d |
|- ( [ <. z , w >. ] .~ = B -> ( ( A .+ [ <. z , w >. ] .~ ) = ( [ <. z , w >. ] .~ .+ A ) <-> ( A .+ B ) = ( B .+ A ) ) ) |
12 |
|
opeq12 |
|- ( ( D = H /\ G = J ) -> <. D , G >. = <. H , J >. ) |
13 |
12
|
eceq1d |
|- ( ( D = H /\ G = J ) -> [ <. D , G >. ] .~ = [ <. H , J >. ] .~ ) |
14 |
4 5 13
|
mp2an |
|- [ <. D , G >. ] .~ = [ <. H , J >. ] .~ |
15 |
3
|
ancoms |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) = [ <. H , J >. ] .~ ) |
16 |
14 2 15
|
3eqtr4a |
|- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) ) |
17 |
1 8 11 16
|
2ecoptocl |
|- ( ( A e. C /\ B e. C ) -> ( A .+ B ) = ( B .+ A ) ) |