Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ecqs.1 | |- R e. _V |
|
| Assertion | ecqs | |- [ A ] R = U. ( { A } /. R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecqs.1 | |- R e. _V |
|
| 2 | df-ec | |- [ A ] R = ( R " { A } ) |
|
| 3 | uniqs | |- ( R e. _V -> U. ( { A } /. R ) = ( R " { A } ) ) |
|
| 4 | 1 3 | ax-mp | |- U. ( { A } /. R ) = ( R " { A } ) |
| 5 | 2 4 | eqtr4i | |- [ A ] R = U. ( { A } /. R ) |