Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ecqs.1 | |- R e. _V | |
| Assertion | ecqs | |- [ A ] R = U. ( { A } /. R ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ecqs.1 | |- R e. _V | |
| 2 | df-ec |  |-  [ A ] R = ( R " { A } ) | |
| 3 | uniqs |  |-  ( R e. _V -> U. ( { A } /. R ) = ( R " { A } ) ) | |
| 4 | 1 3 | ax-mp |  |-  U. ( { A } /. R ) = ( R " { A } ) | 
| 5 | 2 4 | eqtr4i |  |-  [ A ] R = U. ( { A } /. R ) |