Metamath Proof Explorer


Theorem ecqs

Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999)

Ref Expression
Hypothesis ecqs.1
|- R e. _V
Assertion ecqs
|- [ A ] R = U. ( { A } /. R )

Proof

Step Hyp Ref Expression
1 ecqs.1
 |-  R e. _V
2 df-ec
 |-  [ A ] R = ( R " { A } )
3 uniqs
 |-  ( R e. _V -> U. ( { A } /. R ) = ( R " { A } ) )
4 1 3 ax-mp
 |-  U. ( { A } /. R ) = ( R " { A } )
5 2 4 eqtr4i
 |-  [ A ] R = U. ( { A } /. R )