Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ecqs.1 | |- R e. _V |
|
Assertion | ecqs | |- [ A ] R = U. ( { A } /. R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecqs.1 | |- R e. _V |
|
2 | df-ec | |- [ A ] R = ( R " { A } ) |
|
3 | uniqs | |- ( R e. _V -> U. ( { A } /. R ) = ( R " { A } ) ) |
|
4 | 1 3 | ax-mp | |- U. ( { A } /. R ) = ( R " { A } ) |
5 | 2 4 | eqtr4i | |- [ A ] R = U. ( { A } /. R ) |