| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ecqusaddd.i | 
							 |-  ( ph -> I e. ( NrmSGrp ` R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ecqusaddd.b | 
							 |-  B = ( Base ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							ecqusaddd.g | 
							 |-  .~ = ( R ~QG I )  | 
						
						
							| 4 | 
							
								
							 | 
							ecqusaddd.q | 
							 |-  Q = ( R /s .~ )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							ecqusaddd | 
							 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ = ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							elfvexd | 
							 |-  ( ph -> R e. _V )  | 
						
						
							| 7 | 
							
								
							 | 
							nsgsubg | 
							 |-  ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) )  | 
						
						
							| 8 | 
							
								
							 | 
							subgrcl | 
							 |-  ( I e. ( SubGrp ` R ) -> R e. Grp )  | 
						
						
							| 9 | 
							
								1 7 8
							 | 
							3syl | 
							 |-  ( ph -> R e. Grp )  | 
						
						
							| 10 | 
							
								9
							 | 
							anim1i | 
							 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ ( A e. B /\ C e. B ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							3anass | 
							 |-  ( ( R e. Grp /\ A e. B /\ C e. B ) <-> ( R e. Grp /\ ( A e. B /\ C e. B ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylibr | 
							 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ A e. B /\ C e. B ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` R ) = ( +g ` R )  | 
						
						
							| 14 | 
							
								2 13
							 | 
							grpcl | 
							 |-  ( ( R e. Grp /\ A e. B /\ C e. B ) -> ( A ( +g ` R ) C ) e. B )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							syl | 
							 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( A ( +g ` R ) C ) e. B )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` Q ) = ( Base ` Q )  | 
						
						
							| 17 | 
							
								3 4 2 16
							 | 
							quseccl0 | 
							 |-  ( ( R e. _V /\ ( A ( +g ` R ) C ) e. B ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) )  | 
						
						
							| 18 | 
							
								6 15 17
							 | 
							syl2an2r | 
							 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) )  | 
						
						
							| 19 | 
							
								5 18
							 | 
							eqeltrrd | 
							 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) e. ( Base ` Q ) )  |