Step |
Hyp |
Ref |
Expression |
1 |
|
ecqusaddd.i |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
2 |
|
ecqusaddd.b |
|- B = ( Base ` R ) |
3 |
|
ecqusaddd.g |
|- .~ = ( R ~QG I ) |
4 |
|
ecqusaddd.q |
|- Q = ( R /s .~ ) |
5 |
1
|
anim1i |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( I e. ( NrmSGrp ` R ) /\ ( A e. B /\ C e. B ) ) ) |
6 |
|
3anass |
|- ( ( I e. ( NrmSGrp ` R ) /\ A e. B /\ C e. B ) <-> ( I e. ( NrmSGrp ` R ) /\ ( A e. B /\ C e. B ) ) ) |
7 |
5 6
|
sylibr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( I e. ( NrmSGrp ` R ) /\ A e. B /\ C e. B ) ) |
8 |
3
|
oveq2i |
|- ( R /s .~ ) = ( R /s ( R ~QG I ) ) |
9 |
4 8
|
eqtri |
|- Q = ( R /s ( R ~QG I ) ) |
10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
11 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
12 |
9 2 10 11
|
qusadd |
|- ( ( I e. ( NrmSGrp ` R ) /\ A e. B /\ C e. B ) -> ( [ A ] ( R ~QG I ) ( +g ` Q ) [ C ] ( R ~QG I ) ) = [ ( A ( +g ` R ) C ) ] ( R ~QG I ) ) |
13 |
7 12
|
syl |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] ( R ~QG I ) ( +g ` Q ) [ C ] ( R ~QG I ) ) = [ ( A ( +g ` R ) C ) ] ( R ~QG I ) ) |
14 |
3
|
eceq2i |
|- [ A ] .~ = [ A ] ( R ~QG I ) |
15 |
3
|
eceq2i |
|- [ C ] .~ = [ C ] ( R ~QG I ) |
16 |
14 15
|
oveq12i |
|- ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) = ( [ A ] ( R ~QG I ) ( +g ` Q ) [ C ] ( R ~QG I ) ) |
17 |
3
|
eceq2i |
|- [ ( A ( +g ` R ) C ) ] .~ = [ ( A ( +g ` R ) C ) ] ( R ~QG I ) |
18 |
13 16 17
|
3eqtr4g |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) = [ ( A ( +g ` R ) C ) ] .~ ) |
19 |
18
|
eqcomd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ = ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) ) |