Description: The restricted coset of B when B is an element of the restriction. (Contributed by Peter Mazsa, 16-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecres2 | |- ( B e. A -> [ B ] ( R |` A ) = [ B ] R )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elecres | |- ( y e. _V -> ( y e. [ B ] ( R |` A ) <-> ( B e. A /\ B R y ) ) )  | 
						|
| 2 | 1 | elv | |- ( y e. [ B ] ( R |` A ) <-> ( B e. A /\ B R y ) )  | 
						
| 3 | 2 | baib | |- ( B e. A -> ( y e. [ B ] ( R |` A ) <-> B R y ) )  | 
						
| 4 | 3 | eqabdv |  |-  ( B e. A -> [ B ] ( R |` A ) = { y | B R y } ) | 
						
| 5 | dfec2 |  |-  ( B e. A -> [ B ] R = { y | B R y } ) | 
						|
| 6 | 4 5 | eqtr4d | |- ( B e. A -> [ B ] ( R |` A ) = [ B ] R )  |