Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ecss.1 | |- ( ph -> R Er X ) |
|
| Assertion | ecss | |- ( ph -> [ A ] R C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecss.1 | |- ( ph -> R Er X ) |
|
| 2 | df-ec | |- [ A ] R = ( R " { A } ) |
|
| 3 | imassrn | |- ( R " { A } ) C_ ran R |
|
| 4 | 2 3 | eqsstri | |- [ A ] R C_ ran R |
| 5 | errn | |- ( R Er X -> ran R = X ) |
|
| 6 | 1 5 | syl | |- ( ph -> ran R = X ) |
| 7 | 4 6 | sseqtrid | |- ( ph -> [ A ] R C_ X ) |