Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ectocl.1 | |- S = ( B /. R ) |
|
ectocl.2 | |- ( [ x ] R = A -> ( ph <-> ps ) ) |
||
ectocl.3 | |- ( x e. B -> ph ) |
||
Assertion | ectocl | |- ( A e. S -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ectocl.1 | |- S = ( B /. R ) |
|
2 | ectocl.2 | |- ( [ x ] R = A -> ( ph <-> ps ) ) |
|
3 | ectocl.3 | |- ( x e. B -> ph ) |
|
4 | tru | |- T. |
|
5 | 3 | adantl | |- ( ( T. /\ x e. B ) -> ph ) |
6 | 1 2 5 | ectocld | |- ( ( T. /\ A e. S ) -> ps ) |
7 | 4 6 | mpan | |- ( A e. S -> ps ) |