Metamath Proof Explorer


Theorem ectocl

Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ectocl.1
|- S = ( B /. R )
ectocl.2
|- ( [ x ] R = A -> ( ph <-> ps ) )
ectocl.3
|- ( x e. B -> ph )
Assertion ectocl
|- ( A e. S -> ps )

Proof

Step Hyp Ref Expression
1 ectocl.1
 |-  S = ( B /. R )
2 ectocl.2
 |-  ( [ x ] R = A -> ( ph <-> ps ) )
3 ectocl.3
 |-  ( x e. B -> ph )
4 tru
 |-  T.
5 3 adantl
 |-  ( ( T. /\ x e. B ) -> ph )
6 1 2 5 ectocld
 |-  ( ( T. /\ A e. S ) -> ps )
7 4 6 mpan
 |-  ( A e. S -> ps )