Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ectocl.1 | |- S = ( B /. R ) | |
| ectocl.2 | |- ( [ x ] R = A -> ( ph <-> ps ) ) | ||
| ectocl.3 | |- ( x e. B -> ph ) | ||
| Assertion | ectocl | |- ( A e. S -> ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ectocl.1 | |- S = ( B /. R ) | |
| 2 | ectocl.2 | |- ( [ x ] R = A -> ( ph <-> ps ) ) | |
| 3 | ectocl.3 | |- ( x e. B -> ph ) | |
| 4 | tru | |- T. | |
| 5 | 3 | adantl | |- ( ( T. /\ x e. B ) -> ph ) | 
| 6 | 1 2 5 | ectocld | |- ( ( T. /\ A e. S ) -> ps ) | 
| 7 | 4 6 | mpan | |- ( A e. S -> ps ) |