Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ectocl.1 | |- S = ( B /. R ) |
|
| ectocl.2 | |- ( [ x ] R = A -> ( ph <-> ps ) ) |
||
| ectocld.3 | |- ( ( ch /\ x e. B ) -> ph ) |
||
| Assertion | ectocld | |- ( ( ch /\ A e. S ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ectocl.1 | |- S = ( B /. R ) |
|
| 2 | ectocl.2 | |- ( [ x ] R = A -> ( ph <-> ps ) ) |
|
| 3 | ectocld.3 | |- ( ( ch /\ x e. B ) -> ph ) |
|
| 4 | 2 | eqcoms | |- ( A = [ x ] R -> ( ph <-> ps ) ) |
| 5 | 3 4 | syl5ibcom | |- ( ( ch /\ x e. B ) -> ( A = [ x ] R -> ps ) ) |
| 6 | 5 | rexlimdva | |- ( ch -> ( E. x e. B A = [ x ] R -> ps ) ) |
| 7 | elqsi | |- ( A e. ( B /. R ) -> E. x e. B A = [ x ] R ) |
|
| 8 | 7 1 | eleq2s | |- ( A e. S -> E. x e. B A = [ x ] R ) |
| 9 | 6 8 | impel | |- ( ( ch /\ A e. S ) -> ps ) |