Metamath Proof Explorer


Theorem ectocld

Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ectocl.1
|- S = ( B /. R )
ectocl.2
|- ( [ x ] R = A -> ( ph <-> ps ) )
ectocld.3
|- ( ( ch /\ x e. B ) -> ph )
Assertion ectocld
|- ( ( ch /\ A e. S ) -> ps )

Proof

Step Hyp Ref Expression
1 ectocl.1
 |-  S = ( B /. R )
2 ectocl.2
 |-  ( [ x ] R = A -> ( ph <-> ps ) )
3 ectocld.3
 |-  ( ( ch /\ x e. B ) -> ph )
4 2 eqcoms
 |-  ( A = [ x ] R -> ( ph <-> ps ) )
5 3 4 syl5ibcom
 |-  ( ( ch /\ x e. B ) -> ( A = [ x ] R -> ps ) )
6 5 rexlimdva
 |-  ( ch -> ( E. x e. B A = [ x ] R -> ps ) )
7 elqsi
 |-  ( A e. ( B /. R ) -> E. x e. B A = [ x ] R )
8 7 1 eleq2s
 |-  ( A e. S -> E. x e. B A = [ x ] R )
9 6 8 impel
 |-  ( ( ch /\ A e. S ) -> ps )