Step |
Hyp |
Ref |
Expression |
1 |
|
edg0iedg0.i |
|- I = ( iEdg ` G ) |
2 |
|
edg0iedg0.e |
|- E = ( Edg ` G ) |
3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
4 |
2 3
|
eqtri |
|- E = ran ( iEdg ` G ) |
5 |
4
|
eqeq1i |
|- ( E = (/) <-> ran ( iEdg ` G ) = (/) ) |
6 |
5
|
a1i |
|- ( Fun I -> ( E = (/) <-> ran ( iEdg ` G ) = (/) ) ) |
7 |
1
|
eqcomi |
|- ( iEdg ` G ) = I |
8 |
7
|
rneqi |
|- ran ( iEdg ` G ) = ran I |
9 |
8
|
eqeq1i |
|- ( ran ( iEdg ` G ) = (/) <-> ran I = (/) ) |
10 |
9
|
a1i |
|- ( Fun I -> ( ran ( iEdg ` G ) = (/) <-> ran I = (/) ) ) |
11 |
|
funrel |
|- ( Fun I -> Rel I ) |
12 |
|
relrn0 |
|- ( Rel I -> ( I = (/) <-> ran I = (/) ) ) |
13 |
12
|
bicomd |
|- ( Rel I -> ( ran I = (/) <-> I = (/) ) ) |
14 |
11 13
|
syl |
|- ( Fun I -> ( ran I = (/) <-> I = (/) ) ) |
15 |
6 10 14
|
3bitrd |
|- ( Fun I -> ( E = (/) <-> I = (/) ) ) |