| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edg0iedg0.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 |  | edg0iedg0.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 4 | 2 3 | eqtri |  |-  E = ran ( iEdg ` G ) | 
						
							| 5 | 4 | eqeq1i |  |-  ( E = (/) <-> ran ( iEdg ` G ) = (/) ) | 
						
							| 6 | 5 | a1i |  |-  ( Fun I -> ( E = (/) <-> ran ( iEdg ` G ) = (/) ) ) | 
						
							| 7 | 1 | eqcomi |  |-  ( iEdg ` G ) = I | 
						
							| 8 | 7 | rneqi |  |-  ran ( iEdg ` G ) = ran I | 
						
							| 9 | 8 | eqeq1i |  |-  ( ran ( iEdg ` G ) = (/) <-> ran I = (/) ) | 
						
							| 10 | 9 | a1i |  |-  ( Fun I -> ( ran ( iEdg ` G ) = (/) <-> ran I = (/) ) ) | 
						
							| 11 |  | funrel |  |-  ( Fun I -> Rel I ) | 
						
							| 12 |  | relrn0 |  |-  ( Rel I -> ( I = (/) <-> ran I = (/) ) ) | 
						
							| 13 | 12 | bicomd |  |-  ( Rel I -> ( ran I = (/) <-> I = (/) ) ) | 
						
							| 14 | 11 13 | syl |  |-  ( Fun I -> ( ran I = (/) <-> I = (/) ) ) | 
						
							| 15 | 6 10 14 | 3bitrd |  |-  ( Fun I -> ( E = (/) <-> I = (/) ) ) |