Step |
Hyp |
Ref |
Expression |
1 |
|
edginwlk.i |
|- I = ( iEdg ` G ) |
2 |
|
edginwlk.e |
|- E = ( Edg ` G ) |
3 |
|
simp1 |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> Fun I ) |
4 |
|
wrdsymbcl |
|- ( ( F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` K ) e. dom I ) |
5 |
4
|
3adant1 |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` K ) e. dom I ) |
6 |
|
fvelrn |
|- ( ( Fun I /\ ( F ` K ) e. dom I ) -> ( I ` ( F ` K ) ) e. ran I ) |
7 |
3 5 6
|
syl2anc |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` K ) ) e. ran I ) |
8 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
9 |
1
|
eqcomi |
|- ( iEdg ` G ) = I |
10 |
9
|
rneqi |
|- ran ( iEdg ` G ) = ran I |
11 |
2 8 10
|
3eqtri |
|- E = ran I |
12 |
7 11
|
eleqtrrdi |
|- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` K ) ) e. E ) |