| Step |
Hyp |
Ref |
Expression |
| 1 |
|
edgssv2.v |
|- V = ( Vtx ` G ) |
| 2 |
|
edgssv2.e |
|- E = ( Edg ` G ) |
| 3 |
2
|
eleq2i |
|- ( C e. E <-> C e. ( Edg ` G ) ) |
| 4 |
|
edgusgr |
|- ( ( G e. USGraph /\ C e. ( Edg ` G ) ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 5 |
3 4
|
sylan2b |
|- ( ( G e. USGraph /\ C e. E ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 6 |
|
elpwi |
|- ( C e. ~P ( Vtx ` G ) -> C C_ ( Vtx ` G ) ) |
| 7 |
6
|
anim1i |
|- ( ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) -> ( C C_ ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 8 |
5 7
|
syl |
|- ( ( G e. USGraph /\ C e. E ) -> ( C C_ ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 9 |
1
|
a1i |
|- ( ( G e. USGraph /\ C e. E ) -> V = ( Vtx ` G ) ) |
| 10 |
9
|
sseq2d |
|- ( ( G e. USGraph /\ C e. E ) -> ( C C_ V <-> C C_ ( Vtx ` G ) ) ) |
| 11 |
10
|
anbi1d |
|- ( ( G e. USGraph /\ C e. E ) -> ( ( C C_ V /\ ( # ` C ) = 2 ) <-> ( C C_ ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) ) |
| 12 |
8 11
|
mpbird |
|- ( ( G e. USGraph /\ C e. E ) -> ( C C_ V /\ ( # ` C ) = 2 ) ) |