Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | edgstruct.s | |- G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } |
|
Assertion | edgstruct | |- ( ( V e. W /\ E e. X ) -> ( Edg ` G ) = ran E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgstruct.s | |- G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } |
|
2 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
3 | 1 | struct2griedg | |- ( ( V e. W /\ E e. X ) -> ( iEdg ` G ) = E ) |
4 | 3 | rneqd | |- ( ( V e. W /\ E e. X ) -> ran ( iEdg ` G ) = ran E ) |
5 | 2 4 | syl5eq | |- ( ( V e. W /\ E e. X ) -> ( Edg ` G ) = ran E ) |