Metamath Proof Explorer


Theorem edgstruct

Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020)

Ref Expression
Hypothesis edgstruct.s
|- G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. }
Assertion edgstruct
|- ( ( V e. W /\ E e. X ) -> ( Edg ` G ) = ran E )

Proof

Step Hyp Ref Expression
1 edgstruct.s
 |-  G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. }
2 edgval
 |-  ( Edg ` G ) = ran ( iEdg ` G )
3 1 struct2griedg
 |-  ( ( V e. W /\ E e. X ) -> ( iEdg ` G ) = E )
4 3 rneqd
 |-  ( ( V e. W /\ E e. X ) -> ran ( iEdg ` G ) = ran E )
5 2 4 syl5eq
 |-  ( ( V e. W /\ E e. X ) -> ( Edg ` G ) = ran E )