Description: Properties of an edge of a multigraph. (Contributed by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | edgumgr | |- ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | umgredgss |  |-  ( G e. UMGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) | |
| 2 | 1 | sselda |  |-  ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> E e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) | 
| 3 | fveqeq2 | |- ( x = E -> ( ( # ` x ) = 2 <-> ( # ` E ) = 2 ) ) | |
| 4 | 3 | elrab |  |-  ( E e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } <-> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) ) | 
| 5 | 2 4 | sylib | |- ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) ) |