Description: Properties of an edge of a multigraph. (Contributed by AV, 25-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | edgumgr | |- ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgredgss | |- ( G e. UMGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
|
2 | 1 | sselda | |- ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> E e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
3 | fveqeq2 | |- ( x = E -> ( ( # ` x ) = 2 <-> ( # ` E ) = 2 ) ) |
|
4 | 3 | elrab | |- ( E e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } <-> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) ) |
5 | 2 4 | sylib | |- ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) ) |