Metamath Proof Explorer


Theorem edgumgr

Description: Properties of an edge of a multigraph. (Contributed by AV, 25-Nov-2020)

Ref Expression
Assertion edgumgr
|- ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) )

Proof

Step Hyp Ref Expression
1 umgredgss
 |-  ( G e. UMGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )
2 1 sselda
 |-  ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> E e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )
3 fveqeq2
 |-  ( x = E -> ( ( # ` x ) = 2 <-> ( # ` E ) = 2 ) )
4 3 elrab
 |-  ( E e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } <-> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) )
5 2 4 sylib
 |-  ( ( G e. UMGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) )