| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 2 | 1 | a1i |  |-  ( G e. UPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) | 
						
							| 3 | 2 | eleq2d |  |-  ( G e. UPGraph -> ( E e. ( Edg ` G ) <-> E e. ran ( iEdg ` G ) ) ) | 
						
							| 4 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 5 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 6 | 4 5 | upgrf |  |-  ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 7 | 6 | frnd |  |-  ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 8 | 7 | sseld |  |-  ( G e. UPGraph -> ( E e. ran ( iEdg ` G ) -> E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 9 |  | fveq2 |  |-  ( x = E -> ( # ` x ) = ( # ` E ) ) | 
						
							| 10 | 9 | breq1d |  |-  ( x = E -> ( ( # ` x ) <_ 2 <-> ( # ` E ) <_ 2 ) ) | 
						
							| 11 | 10 | elrab |  |-  ( E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) ) | 
						
							| 12 |  | eldifsn |  |-  ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) <-> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) ) | 
						
							| 13 | 12 | biimpi |  |-  ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) ) | 
						
							| 14 | 13 | anim1i |  |-  ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) /\ ( # ` E ) <_ 2 ) ) | 
						
							| 15 |  | df-3an |  |-  ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) <-> ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) /\ ( # ` E ) <_ 2 ) ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) | 
						
							| 17 | 16 | a1i |  |-  ( G e. UPGraph -> ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) | 
						
							| 18 | 11 17 | biimtrid |  |-  ( G e. UPGraph -> ( E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) | 
						
							| 19 | 8 18 | syld |  |-  ( G e. UPGraph -> ( E e. ran ( iEdg ` G ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) | 
						
							| 20 | 3 19 | sylbid |  |-  ( G e. UPGraph -> ( E e. ( Edg ` G ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( G e. UPGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) |