Metamath Proof Explorer


Theorem edgusgr

Description: An edge of a simple graph is an unordered pair of vertices. (Contributed by AV, 1-Jan-2020) (Revised by AV, 14-Oct-2020)

Ref Expression
Assertion edgusgr
|- ( ( G e. USGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) )

Proof

Step Hyp Ref Expression
1 usgredgss
 |-  ( G e. USGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )
2 1 sselda
 |-  ( ( G e. USGraph /\ E e. ( Edg ` G ) ) -> E e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )
3 fveqeq2
 |-  ( x = E -> ( ( # ` x ) = 2 <-> ( # ` E ) = 2 ) )
4 3 elrab
 |-  ( E e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } <-> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) )
5 2 4 sylib
 |-  ( ( G e. USGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ ( # ` E ) = 2 ) )