Metamath Proof Explorer


Theorem edgval

Description: The edges of a graph. (Contributed by AV, 1-Jan-2020) (Revised by AV, 13-Oct-2020) (Revised by AV, 8-Dec-2021)

Ref Expression
Assertion edgval
|- ( Edg ` G ) = ran ( iEdg ` G )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) )
2 1 rneqd
 |-  ( g = G -> ran ( iEdg ` g ) = ran ( iEdg ` G ) )
3 df-edg
 |-  Edg = ( g e. _V |-> ran ( iEdg ` g ) )
4 fvex
 |-  ( iEdg ` G ) e. _V
5 4 rnex
 |-  ran ( iEdg ` G ) e. _V
6 2 3 5 fvmpt
 |-  ( G e. _V -> ( Edg ` G ) = ran ( iEdg ` G ) )
7 rn0
 |-  ran (/) = (/)
8 7 a1i
 |-  ( -. G e. _V -> ran (/) = (/) )
9 fvprc
 |-  ( -. G e. _V -> ( iEdg ` G ) = (/) )
10 9 rneqd
 |-  ( -. G e. _V -> ran ( iEdg ` G ) = ran (/) )
11 fvprc
 |-  ( -. G e. _V -> ( Edg ` G ) = (/) )
12 8 10 11 3eqtr4rd
 |-  ( -. G e. _V -> ( Edg ` G ) = ran ( iEdg ` G ) )
13 6 12 pm2.61i
 |-  ( Edg ` G ) = ran ( iEdg ` G )