Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
2 |
1
|
rneqd |
|- ( g = G -> ran ( iEdg ` g ) = ran ( iEdg ` G ) ) |
3 |
|
df-edg |
|- Edg = ( g e. _V |-> ran ( iEdg ` g ) ) |
4 |
|
fvex |
|- ( iEdg ` G ) e. _V |
5 |
4
|
rnex |
|- ran ( iEdg ` G ) e. _V |
6 |
2 3 5
|
fvmpt |
|- ( G e. _V -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
7 |
|
rn0 |
|- ran (/) = (/) |
8 |
7
|
a1i |
|- ( -. G e. _V -> ran (/) = (/) ) |
9 |
|
fvprc |
|- ( -. G e. _V -> ( iEdg ` G ) = (/) ) |
10 |
9
|
rneqd |
|- ( -. G e. _V -> ran ( iEdg ` G ) = ran (/) ) |
11 |
|
fvprc |
|- ( -. G e. _V -> ( Edg ` G ) = (/) ) |
12 |
8 10 11
|
3eqtr4rd |
|- ( -. G e. _V -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
13 |
6 12
|
pm2.61i |
|- ( Edg ` G ) = ran ( iEdg ` G ) |