Metamath Proof Explorer


Theorem ee011

Description: e011 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee011.1
|- ph
ee011.2
|- ( ps -> ch )
ee011.3
|- ( ps -> th )
ee011.4
|- ( ph -> ( ch -> ( th -> ta ) ) )
Assertion ee011
|- ( ps -> ta )

Proof

Step Hyp Ref Expression
1 ee011.1
 |-  ph
2 ee011.2
 |-  ( ps -> ch )
3 ee011.3
 |-  ( ps -> th )
4 ee011.4
 |-  ( ph -> ( ch -> ( th -> ta ) ) )
5 1 a1i
 |-  ( ps -> ph )
6 5 2 3 4 syl3c
 |-  ( ps -> ta )