Metamath Proof Explorer


Theorem ee012

Description: e012 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee012.1
|- ph
ee012.2
|- ( ps -> ch )
ee012.3
|- ( ps -> ( th -> ta ) )
ee012.4
|- ( ph -> ( ch -> ( ta -> et ) ) )
Assertion ee012
|- ( ps -> ( th -> et ) )

Proof

Step Hyp Ref Expression
1 ee012.1
 |-  ph
2 ee012.2
 |-  ( ps -> ch )
3 ee012.3
 |-  ( ps -> ( th -> ta ) )
4 ee012.4
 |-  ( ph -> ( ch -> ( ta -> et ) ) )
5 1 a1i
 |-  ( th -> ph )
6 5 a1i
 |-  ( ps -> ( th -> ph ) )
7 2 a1d
 |-  ( ps -> ( th -> ch ) )
8 6 7 3 4 ee222
 |-  ( ps -> ( th -> et ) )