Metamath Proof Explorer


Theorem ee01an

Description: e01an without virtual deductions. sylancr is also a form of e01an without virtual deduction, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee01an.1
|- ph
ee01an.2
|- ( ps -> ch )
ee01an.3
|- ( ( ph /\ ch ) -> th )
Assertion ee01an
|- ( ps -> th )

Proof

Step Hyp Ref Expression
1 ee01an.1
 |-  ph
2 ee01an.2
 |-  ( ps -> ch )
3 ee01an.3
 |-  ( ( ph /\ ch ) -> th )
4 1 2 3 sylancr
 |-  ( ps -> th )