Metamath Proof Explorer


Theorem ee02an

Description: e02an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee02an.1
|- ph
ee02an.2
|- ( ps -> ( ch -> th ) )
ee02an.3
|- ( ( ph /\ th ) -> ta )
Assertion ee02an
|- ( ps -> ( ch -> ta ) )

Proof

Step Hyp Ref Expression
1 ee02an.1
 |-  ph
2 ee02an.2
 |-  ( ps -> ( ch -> th ) )
3 ee02an.3
 |-  ( ( ph /\ th ) -> ta )
4 3 ex
 |-  ( ph -> ( th -> ta ) )
5 1 2 4 mpsylsyld
 |-  ( ps -> ( ch -> ta ) )