Metamath Proof Explorer


Theorem ee03

Description: e03 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee03.1
|- ph
ee03.2
|- ( ps -> ( ch -> ( th -> ta ) ) )
ee03.3
|- ( ph -> ( ta -> et ) )
Assertion ee03
|- ( ps -> ( ch -> ( th -> et ) ) )

Proof

Step Hyp Ref Expression
1 ee03.1
 |-  ph
2 ee03.2
 |-  ( ps -> ( ch -> ( th -> ta ) ) )
3 ee03.3
 |-  ( ph -> ( ta -> et ) )
4 1 a1i
 |-  ( ps -> ph )
5 4 a1d
 |-  ( ps -> ( ch -> ph ) )
6 5 a1dd
 |-  ( ps -> ( ch -> ( th -> ph ) ) )
7 6 2 3 ee33
 |-  ( ps -> ( ch -> ( th -> et ) ) )