Description: Conjunction form of ee03 . (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ee03an.1 | |- ph |
|
ee03an.2 | |- ( ps -> ( ch -> ( th -> ta ) ) ) |
||
ee03an.3 | |- ( ( ph /\ ta ) -> et ) |
||
Assertion | ee03an | |- ( ps -> ( ch -> ( th -> et ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ee03an.1 | |- ph |
|
2 | ee03an.2 | |- ( ps -> ( ch -> ( th -> ta ) ) ) |
|
3 | ee03an.3 | |- ( ( ph /\ ta ) -> et ) |
|
4 | 3 | ex | |- ( ph -> ( ta -> et ) ) |
5 | 1 2 4 | ee03 | |- ( ps -> ( ch -> ( th -> et ) ) ) |