Metamath Proof Explorer


Theorem ee03an

Description: Conjunction form of ee03 . (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee03an.1
|- ph
ee03an.2
|- ( ps -> ( ch -> ( th -> ta ) ) )
ee03an.3
|- ( ( ph /\ ta ) -> et )
Assertion ee03an
|- ( ps -> ( ch -> ( th -> et ) ) )

Proof

Step Hyp Ref Expression
1 ee03an.1
 |-  ph
2 ee03an.2
 |-  ( ps -> ( ch -> ( th -> ta ) ) )
3 ee03an.3
 |-  ( ( ph /\ ta ) -> et )
4 3 ex
 |-  ( ph -> ( ta -> et ) )
5 1 2 4 ee03
 |-  ( ps -> ( ch -> ( th -> et ) ) )