Metamath Proof Explorer


Theorem ee101

Description: e101 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee101.1
|- ( ph -> ps )
ee101.2
|- ch
ee101.3
|- ( ph -> th )
ee101.4
|- ( ps -> ( ch -> ( th -> ta ) ) )
Assertion ee101
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 ee101.1
 |-  ( ph -> ps )
2 ee101.2
 |-  ch
3 ee101.3
 |-  ( ph -> th )
4 ee101.4
 |-  ( ps -> ( ch -> ( th -> ta ) ) )
5 2 a1i
 |-  ( ph -> ch )
6 1 5 3 4 syl3c
 |-  ( ph -> ta )