Metamath Proof Explorer


Theorem ee110

Description: e110 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee110.1
|- ( ph -> ps )
ee110.2
|- ( ph -> ch )
ee110.3
|- th
ee110.4
|- ( ps -> ( ch -> ( th -> ta ) ) )
Assertion ee110
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 ee110.1
 |-  ( ph -> ps )
2 ee110.2
 |-  ( ph -> ch )
3 ee110.3
 |-  th
4 ee110.4
 |-  ( ps -> ( ch -> ( th -> ta ) ) )
5 3 a1i
 |-  ( ph -> th )
6 1 2 5 4 syl3c
 |-  ( ph -> ta )