Metamath Proof Explorer


Theorem ee11an

Description: e11an without virtual deductions. syl22anc is also e11an without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee11an.1
|- ( ph -> ps )
ee11an.2
|- ( ph -> ch )
ee11an.3
|- ( ( ps /\ ch ) -> th )
Assertion ee11an
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 ee11an.1
 |-  ( ph -> ps )
2 ee11an.2
 |-  ( ph -> ch )
3 ee11an.3
 |-  ( ( ps /\ ch ) -> th )
4 3 ex
 |-  ( ps -> ( ch -> th ) )
5 1 2 4 sylc
 |-  ( ph -> th )