Metamath Proof Explorer


Theorem ee123

Description: e123 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee123.1
|- ( ph -> ps )
ee123.2
|- ( ph -> ( ch -> th ) )
ee123.3
|- ( ph -> ( ch -> ( ta -> et ) ) )
ee123.4
|- ( ps -> ( th -> ( et -> ze ) ) )
Assertion ee123
|- ( ph -> ( ch -> ( ta -> ze ) ) )

Proof

Step Hyp Ref Expression
1 ee123.1
 |-  ( ph -> ps )
2 ee123.2
 |-  ( ph -> ( ch -> th ) )
3 ee123.3
 |-  ( ph -> ( ch -> ( ta -> et ) ) )
4 ee123.4
 |-  ( ps -> ( th -> ( et -> ze ) ) )
5 1 a1d
 |-  ( ph -> ( ta -> ps ) )
6 5 a1d
 |-  ( ph -> ( ch -> ( ta -> ps ) ) )
7 2 a1dd
 |-  ( ph -> ( ch -> ( ta -> th ) ) )
8 6 7 3 4 ee333
 |-  ( ph -> ( ch -> ( ta -> ze ) ) )