Metamath Proof Explorer


Theorem ee13an

Description: e13an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee13an.1
|- ( ph -> ps )
ee13an.2
|- ( ph -> ( ch -> ( th -> ta ) ) )
ee13an.3
|- ( ( ps /\ ta ) -> et )
Assertion ee13an
|- ( ph -> ( ch -> ( th -> et ) ) )

Proof

Step Hyp Ref Expression
1 ee13an.1
 |-  ( ph -> ps )
2 ee13an.2
 |-  ( ph -> ( ch -> ( th -> ta ) ) )
3 ee13an.3
 |-  ( ( ps /\ ta ) -> et )
4 3 ex
 |-  ( ps -> ( ta -> et ) )
5 1 2 4 ee13
 |-  ( ph -> ( ch -> ( th -> et ) ) )