Metamath Proof Explorer


Theorem ee200

Description: e200 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee200.1
|- ( ph -> ( ps -> ch ) )
ee200.2
|- th
ee200.3
|- ta
ee200.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion ee200
|- ( ph -> ( ps -> et ) )

Proof

Step Hyp Ref Expression
1 ee200.1
 |-  ( ph -> ( ps -> ch ) )
2 ee200.2
 |-  th
3 ee200.3
 |-  ta
4 ee200.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 2 a1i
 |-  ( ps -> th )
6 5 a1i
 |-  ( ph -> ( ps -> th ) )
7 3 a1i
 |-  ( ps -> ta )
8 7 a1i
 |-  ( ph -> ( ps -> ta ) )
9 1 6 8 4 ee222
 |-  ( ph -> ( ps -> et ) )