Metamath Proof Explorer


Theorem ee20an

Description: e20an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee20an.1
|- ( ph -> ( ps -> ch ) )
ee20an.2
|- th
ee20an.3
|- ( ( ch /\ th ) -> ta )
Assertion ee20an
|- ( ph -> ( ps -> ta ) )

Proof

Step Hyp Ref Expression
1 ee20an.1
 |-  ( ph -> ( ps -> ch ) )
2 ee20an.2
 |-  th
3 ee20an.3
 |-  ( ( ch /\ th ) -> ta )
4 3 ex
 |-  ( ch -> ( th -> ta ) )
5 1 2 4 syl6mpi
 |-  ( ph -> ( ps -> ta ) )