Metamath Proof Explorer


Theorem ee211

Description: e211 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee211.1
|- ( ph -> ( ps -> ch ) )
ee211.2
|- ( ph -> th )
ee211.3
|- ( ph -> ta )
ee211.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion ee211
|- ( ph -> ( ps -> et ) )

Proof

Step Hyp Ref Expression
1 ee211.1
 |-  ( ph -> ( ps -> ch ) )
2 ee211.2
 |-  ( ph -> th )
3 ee211.3
 |-  ( ph -> ta )
4 ee211.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 2 a1d
 |-  ( ph -> ( ps -> th ) )
6 3 a1d
 |-  ( ph -> ( ps -> ta ) )
7 1 5 6 4 ee222
 |-  ( ph -> ( ps -> et ) )