Metamath Proof Explorer


Theorem ee222

Description: e222 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee222.1
|- ( ph -> ( ps -> ch ) )
ee222.2
|- ( ph -> ( ps -> th ) )
ee222.3
|- ( ph -> ( ps -> ta ) )
ee222.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion ee222
|- ( ph -> ( ps -> et ) )

Proof

Step Hyp Ref Expression
1 ee222.1
 |-  ( ph -> ( ps -> ch ) )
2 ee222.2
 |-  ( ph -> ( ps -> th ) )
3 ee222.3
 |-  ( ph -> ( ps -> ta ) )
4 ee222.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 1 imp
 |-  ( ( ph /\ ps ) -> ch )
6 2 imp
 |-  ( ( ph /\ ps ) -> th )
7 3 imp
 |-  ( ( ph /\ ps ) -> ta )
8 5 6 7 4 syl3c
 |-  ( ( ph /\ ps ) -> et )
9 8 ex
 |-  ( ph -> ( ps -> et ) )