Metamath Proof Explorer


Theorem ee23an

Description: e23an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee23an.1
|- ( ph -> ( ps -> ch ) )
ee23an.2
|- ( ph -> ( ps -> ( th -> ta ) ) )
ee23an.3
|- ( ( ch /\ ta ) -> et )
Assertion ee23an
|- ( ph -> ( ps -> ( th -> et ) ) )

Proof

Step Hyp Ref Expression
1 ee23an.1
 |-  ( ph -> ( ps -> ch ) )
2 ee23an.2
 |-  ( ph -> ( ps -> ( th -> ta ) ) )
3 ee23an.3
 |-  ( ( ch /\ ta ) -> et )
4 1 a1dd
 |-  ( ph -> ( ps -> ( th -> ch ) ) )
5 4 2 3 ee33an
 |-  ( ph -> ( ps -> ( th -> et ) ) )