Description: Conjunction form of ee30 . (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ee30an.1 | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
|
ee30an.2 | |- ta |
||
ee30an.3 | |- ( ( th /\ ta ) -> et ) |
||
Assertion | ee30an | |- ( ph -> ( ps -> ( ch -> et ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ee30an.1 | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
|
2 | ee30an.2 | |- ta |
|
3 | ee30an.3 | |- ( ( th /\ ta ) -> et ) |
|
4 | 3 | ex | |- ( th -> ( ta -> et ) ) |
5 | 1 2 4 | ee30 | |- ( ph -> ( ps -> ( ch -> et ) ) ) |