Metamath Proof Explorer


Theorem ee30an

Description: Conjunction form of ee30 . (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee30an.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
ee30an.2
|- ta
ee30an.3
|- ( ( th /\ ta ) -> et )
Assertion ee30an
|- ( ph -> ( ps -> ( ch -> et ) ) )

Proof

Step Hyp Ref Expression
1 ee30an.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 ee30an.2
 |-  ta
3 ee30an.3
 |-  ( ( th /\ ta ) -> et )
4 3 ex
 |-  ( th -> ( ta -> et ) )
5 1 2 4 ee30
 |-  ( ph -> ( ps -> ( ch -> et ) ) )