Metamath Proof Explorer


Theorem ee32

Description: e32 without virtual deductions. (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee32.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
ee32.2
|- ( ph -> ( ps -> ta ) )
ee32.3
|- ( th -> ( ta -> et ) )
Assertion ee32
|- ( ph -> ( ps -> ( ch -> et ) ) )

Proof

Step Hyp Ref Expression
1 ee32.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 ee32.2
 |-  ( ph -> ( ps -> ta ) )
3 ee32.3
 |-  ( th -> ( ta -> et ) )
4 2 a1dd
 |-  ( ph -> ( ps -> ( ch -> ta ) ) )
5 1 4 3 ee33
 |-  ( ph -> ( ps -> ( ch -> et ) ) )