Metamath Proof Explorer


Theorem ee333

Description: e333 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee333.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
ee333.2
|- ( ph -> ( ps -> ( ch -> ta ) ) )
ee333.3
|- ( ph -> ( ps -> ( ch -> et ) ) )
ee333.4
|- ( th -> ( ta -> ( et -> ze ) ) )
Assertion ee333
|- ( ph -> ( ps -> ( ch -> ze ) ) )

Proof

Step Hyp Ref Expression
1 ee333.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 ee333.2
 |-  ( ph -> ( ps -> ( ch -> ta ) ) )
3 ee333.3
 |-  ( ph -> ( ps -> ( ch -> et ) ) )
4 ee333.4
 |-  ( th -> ( ta -> ( et -> ze ) ) )
5 1 3imp
 |-  ( ( ph /\ ps /\ ch ) -> th )
6 2 3imp
 |-  ( ( ph /\ ps /\ ch ) -> ta )
7 3 3imp
 |-  ( ( ph /\ ps /\ ch ) -> et )
8 5 6 7 4 syl3c
 |-  ( ( ph /\ ps /\ ch ) -> ze )
9 8 3exp
 |-  ( ph -> ( ps -> ( ch -> ze ) ) )