Metamath Proof Explorer


Theorem ee33an

Description: e33an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee33an.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
ee33an.2
|- ( ph -> ( ps -> ( ch -> ta ) ) )
ee33an.3
|- ( ( th /\ ta ) -> et )
Assertion ee33an
|- ( ph -> ( ps -> ( ch -> et ) ) )

Proof

Step Hyp Ref Expression
1 ee33an.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 ee33an.2
 |-  ( ph -> ( ps -> ( ch -> ta ) ) )
3 ee33an.3
 |-  ( ( th /\ ta ) -> et )
4 3 ex
 |-  ( th -> ( ta -> et ) )
5 1 2 4 ee33
 |-  ( ph -> ( ps -> ( ch -> et ) ) )