Metamath Proof Explorer


Theorem eeanv

Description: Distribute a pair of existential quantifiers over a conjunction. Combination of 19.41v and 19.42v . For a version requiring fewer axioms but with additional disjoint variable conditions, see exdistrv . (Contributed by NM, 26-Jul-1995)

Ref Expression
Assertion eeanv
|- ( E. x E. y ( ph /\ ps ) <-> ( E. x ph /\ E. y ps ) )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ y ph
2 nfv
 |-  F/ x ps
3 1 2 eean
 |-  ( E. x E. y ( ph /\ ps ) <-> ( E. x ph /\ E. y ps ) )