Metamath Proof Explorer


Theorem eel00cT

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel00cT.1
|- ph
eel00cT.2
|- ps
eel00cT.3
|- ( ( ph /\ ps ) -> ch )
Assertion eel00cT
|- ( T. -> ch )

Proof

Step Hyp Ref Expression
1 eel00cT.1
 |-  ph
2 eel00cT.2
 |-  ps
3 eel00cT.3
 |-  ( ( ph /\ ps ) -> ch )
4 1 3 mpan
 |-  ( ps -> ch )
5 2 4 ax-mp
 |-  ch
6 5 a1i
 |-  ( T. -> ch )