Step |
Hyp |
Ref |
Expression |
1 |
|
eel0T1.1 |
|- ph |
2 |
|
eel0T1.2 |
|- ( T. -> ps ) |
3 |
|
eel0T1.3 |
|- ( ch -> th ) |
4 |
|
eel0T1.4 |
|- ( ( ph /\ ps /\ th ) -> ta ) |
5 |
|
3anass |
|- ( ( ph /\ T. /\ ch ) <-> ( ph /\ ( T. /\ ch ) ) ) |
6 |
|
simpr |
|- ( ( ph /\ ( T. /\ ch ) ) -> ( T. /\ ch ) ) |
7 |
1
|
jctl |
|- ( ( T. /\ ch ) -> ( ph /\ ( T. /\ ch ) ) ) |
8 |
6 7
|
impbii |
|- ( ( ph /\ ( T. /\ ch ) ) <-> ( T. /\ ch ) ) |
9 |
|
truan |
|- ( ( T. /\ ch ) <-> ch ) |
10 |
5 8 9
|
3bitri |
|- ( ( ph /\ T. /\ ch ) <-> ch ) |
11 |
2 4
|
syl3an2 |
|- ( ( ph /\ T. /\ th ) -> ta ) |
12 |
3 11
|
syl3an3 |
|- ( ( ph /\ T. /\ ch ) -> ta ) |
13 |
10 12
|
sylbir |
|- ( ch -> ta ) |