| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eel0T1.1 |
|- ph |
| 2 |
|
eel0T1.2 |
|- ( T. -> ps ) |
| 3 |
|
eel0T1.3 |
|- ( ch -> th ) |
| 4 |
|
eel0T1.4 |
|- ( ( ph /\ ps /\ th ) -> ta ) |
| 5 |
|
3anass |
|- ( ( ph /\ T. /\ ch ) <-> ( ph /\ ( T. /\ ch ) ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ ( T. /\ ch ) ) -> ( T. /\ ch ) ) |
| 7 |
1
|
jctl |
|- ( ( T. /\ ch ) -> ( ph /\ ( T. /\ ch ) ) ) |
| 8 |
6 7
|
impbii |
|- ( ( ph /\ ( T. /\ ch ) ) <-> ( T. /\ ch ) ) |
| 9 |
|
truan |
|- ( ( T. /\ ch ) <-> ch ) |
| 10 |
5 8 9
|
3bitri |
|- ( ( ph /\ T. /\ ch ) <-> ch ) |
| 11 |
2 4
|
syl3an2 |
|- ( ( ph /\ T. /\ th ) -> ta ) |
| 12 |
3 11
|
syl3an3 |
|- ( ( ph /\ T. /\ ch ) -> ta ) |
| 13 |
10 12
|
sylbir |
|- ( ch -> ta ) |