Metamath Proof Explorer


Theorem eel0TT

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel0TT.1
|- ph
eel0TT.2
|- ( T. -> ps )
eel0TT.3
|- ( T. -> ch )
eel0TT.4
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion eel0TT
|- th

Proof

Step Hyp Ref Expression
1 eel0TT.1
 |-  ph
2 eel0TT.2
 |-  ( T. -> ps )
3 eel0TT.3
 |-  ( T. -> ch )
4 eel0TT.4
 |-  ( ( ph /\ ps /\ ch ) -> th )
5 truan
 |-  ( ( T. /\ ch ) <-> ch )
6 1 4 mp3an1
 |-  ( ( ps /\ ch ) -> th )
7 2 6 sylan
 |-  ( ( T. /\ ch ) -> th )
8 5 7 sylbir
 |-  ( ch -> th )
9 3 8 syl
 |-  ( T. -> th )
10 9 mptru
 |-  th